Analysis 3 Video 14 27.11.2020

  • 104
  • 0
Share
720p MP4 1GB
360p MP4 487MB
1080p MP4 2GB
source MP4 3GB
Download
  • 52 Medien
  • hochgeladen 30. November 2020

In dieser Vorlesung werden die wichtigen Konvergenzsätze für die Lebesgue'sche Integrationstheorie diskutiert. Als besonders wichtig ist hier der Satz über die dominierte Konvergenz hervorzuheben, der es erlaubt, punktweise Grenzwertbildung und Integration zu "vertauschen", sofern die Funktionenfolge eine vom Folgenindex unabhängige integrierbare Majorante besitzt. Verzichtet man auf die Vorraussetzung einer integrierbaren Majorante, so kann man punktweise Grenzwerte und Integration nicht vertauschen, wie ein Beispiel gleich am Anfang der Vorlesung zeigt. Ein wichtiges Werkzeug in der Vorlesung ist auch das Lemma von Fatou, welches in der Mitte der Vorlesung diskutiert wird.

Tags: mathematik
Kategorien: Mathematik
Zeige mehr